Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Generative recommendation (GR) is an emerging paradigm that tokenizes items into discrete tokens and learns to autoregressively generate the next tokens as predictions. While this token-generation paradigm is expected to surpass traditional transductive methods, potentially generating new items directly based on semantics, we empirically show that GR models predominantly generate items seen during training and struggle to recommend unseen items. In this paper, we propose SpecGR, a plug-and-play framework that enables GR models to recommend new items in an inductive setting. SpecGR uses a drafter model with inductive capability to propose candidate items, which may include both existing items and new items. The GR model then acts as a verifier, accepting or rejecting candidates while retaining its strong ranking capabilities. We further introduce the guided re-drafting technique to make the proposed candidates more aligned with the outputs of generative recommendation models, improving verification efficiency. We consider two variants for drafting: (1) using an auxiliary drafter model for better flexibility, or (2) leveraging the GR model’s own encoder for parameterefficient self-drafting. Extensive experiments on three realworld datasets demonstrate that SpecGR exhibits both strong inductive recommendation ability and the best overall performance among the compared methods.more » « lessFree, publicly-accessible full text available January 20, 2027
-
Jenkins, C; Taylor, M (Ed.)Generative recommendation (GR) is an emerging paradigm that tokenizes items into discrete tokens and learns to autoregressively generate the next tokens as predictions. While this token-generation paradigm is expected to surpass traditional transductive methods, potentially generating new items directly based on semantics, we empirically show that GR models predominantly generate items seen during training and struggle to recommend unseen items. In this paper, we propose SpecGR, a plug-and-play framework that enables GR models to recommend new items in an inductive setting. SpecGR uses a drafter model with inductive capability to propose candidate items, which may include both existing items and new items. The GR model then acts as a verifier, accepting or rejecting candidates while retaining its strong ranking capabilities. We further introduce the guided re-drafting technique to make the proposed candidates more aligned with the outputs of generative recommendation models, improving verification efficiency. We consider two variants for drafting: (1) using an auxiliary drafter model for better flexibility, or (2) leveraging the GR model’s own encoder for parameterefficient self-drafting. Extensive experiments on three realworld datasets demonstrate that SpecGR exhibits both strong inductive recommendation ability and the best overall performance among the compared methods.more » « lessFree, publicly-accessible full text available January 20, 2027
-
VehiGAN : Generative Adversarial Networks for Adversarially Robust V2X Misbehavior Detection SystemsVehicle-to-Everything (V2X) communication enables vehicles to communicate with other vehicles and roadside infrastructure, enhancing traffic management and improving road safety. However, the open and decentralized nature of V2X networks exposes them to various security threats, especially misbehaviors, necessitating a robust Misbehavior Detection System (MBDS). While Machine Learning (ML) has proved effective in different anomaly detection applications, the existing ML-based MBDSs have shown limitations in generalizing due to the dynamic nature of V2X and insufficient and imbalanced training data. Moreover, they are known to be vulnerable to adversarial ML attacks. On the other hand, Generative Adversarial Networks (GAN) possess the potential to mitigate the aforementioned issues and improve detection performance by synthesizing unseen samples of minority classes and utilizing them during their model training. Therefore, we propose the first application of GAN to design an MBDS that detects any misbehavior and ensures robustness against adversarial perturbation. In this article, we present several key contributions. First, we propose an advanced threat model for stealthy V2X misbehavior where the attacker can transmit malicious data and mask it using adversarial attacks to avoid detection by ML-based MBDS. We formulate two categories of adversarial attacks against the anomaly-based MBDS. Later, in the pursuit of a generalized and robust GAN-based MBDS, we train and evaluate a diverse set of Wasserstein GAN (WGAN) models and presentVehicularGAN(VehiGAN), an ensemble of multiple top-performing WGANs, which transcends the limitations of individual models and improves detection performance. We present a physics-guided data preprocessing technique that generates effective features for ML-based MBDS. In the evaluation, we leverage the state-of-the-art V2X attack simulation tool VASP to create a comprehensive dataset of V2X messages with diverse misbehaviors. Evaluation results show that in 20 out of 35 misbehaviors,VehiGANoutperforms the baseline and exhibits comparable detection performance in other scenarios. Particularly,VehiGANexcels in detecting advanced misbehaviors that manipulate multiple fields in V2X messages simultaneously, replicating unique maneuvers. Moreover,VehiGANprovides approximately 92% improvement in false positive rate under powerful adaptive adversarial attacks, and possesses intrinsic robustness against other adversarial attacks that target the false negative rate. Finally, we make the data and code available for reproducibility and future benchmarking, available athttps://github.com/shahriar0651/VehiGAN.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available August 4, 2026
-
Free, publicly-accessible full text available May 12, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available February 24, 2026
An official website of the United States government
